วันเสาร์ที่ 1 เมษายน พ.ศ. 2566

UNESCO เรียกร้องให้รัฐบาลทั่วโลกนำกรอบจริยธรรมสากลของ AI ไปใช้


AI-Global-Forum
ภาพจาก UNESCO

องค์การการศึกษา วิทยาศาสตร์ และวัฒนธรรมแห่งสหประชาชาติ หรือ UNESCO เรียกร้องให้ทุกประเทศปฏิบัติตามคำแนะนำเกี่ยวกับจริยธรรมของปัญญาประดิษฐ์ (artioficial intelligence) หรือ AI ซึ่งเป็นกรอบจริยธรรมระดับโลกฉบับแรกสำหรับเทคโนโลยี

สิ่งนี้มีขึ้นหลังจากพนักงานด้านเทคโนโลยีกว่า 1,000 คนเรียกร้องให้มีการหยุดฝึกอบรมระบบ AI ที่ทรงพลังชั่วคราว UNESCO พบปัญหาด้านจริยธรรมมากมายเกี่ยวกับ AI โดยเฉพาะการเลือกปฏิบัติและการเหมารวม การบิดเบือนข้อมูล การละเมิดสิทธิในความเป็นส่วนตัว การคุ้มครองข้อมูลส่วนบุคคล และสิทธิมนุษยชนและสิ่งแวดล้อม

แกนกลางของคำแนะนำคือเครื่องมือประเมินความพร้อมที่ช่วยให้ประเทศต่าง ๆ สามารถกำหนดความสามารถและทักษะที่พนักงานของตนต้องการเพื่อควบคุมอุตสาหกรรม AI ปัจจุบันกว่า 40 ประเทศกำลังร่วมมือกับ UNESCO เพื่อกำหนดมาตรการป้องกัน AI ระดับชาติตามคำแนะนำ

อ่านข่าวเต็มได้ที่: UNESCO

วันพฤหัสบดีที่ 30 มีนาคม พ.ศ. 2566

Nvidia แสดงงานวิจัยในการใช้ AI เพื่อปรับปรุงการออกแบบชิป

nvidia-logo
ภาพจาก Reuters

Nvidia เผยแพร่งานวิจัยที่ให้รายละเอียดเกี่ยวกับศักยภาพในการปรับปรุงการออกแบบชิปผ่านปัญญาประดิษฐ์ (AI) แนวทางนี้เกี่ยวข้องกับการรวมวิธีการด้าน AI เพื่อค้นหาตำแหน่งที่ดีกว่าสำหรับการจัดวางทรานซิสเตอร์กลุ่มใหญ่

นักวิจัยของ Nvidia ได้ใช้การเรียนรู้แบบเสริมแรงที่พัฒนาโดยนักวิจัยของ University of Texas โดยมี AI เป็นชั้นที่สอง Bill Dally จาก Nvidia เรียกงานนี้ว่าสำคัญมาก เนื่องจากการปรับปรุงวิธีการผลิตชิปกำลังชะลอตัวลงเนื่องจากต้นทุนต่อทรานซิสเตอร์ในเทคโนโลยีการผลิตชิปรุ่นใหม่สูงกว่ารุ่นก่อนหน้า

Dally อธิบาย "คุณไม่ได้ประหยัดจริง ๆ ในระดับนั้นอีกต่อไป ในการเดินหน้าต่อไปและเพื่อส่งมอบคุณค่าที่มากขึ้นให้กับลูกค้า เราไม่สามารถทำได้ด้วยทรานซิสเตอร์ที่ถูกกว่า แต่จะทำได้จากการออกแบบที่ชาญฉลาดมากขึ้น

อ่านข่าวเต็มได้ที่: Reuters

วันพุธที่ 29 มีนาคม พ.ศ. 2566

จำลองการขับของคนขับที่แย่ ๆ ช่วยลดเวลาและค่าใช้จ่ายในการทดสอบรถขับเคลื่อนอัตโนมัติได้เป็น 1000 เท่า

autonomous-vehical
ภาพจาก University of Michigan News

นักวิจัยของ University of Michigan (U-M) ได้พัฒนาระบบปัญญาประดิษฐ์ (artificial intelligence) หรือAI ที่จำลองเหตุการณ์ด้านความปลอดภัยที่ในระดับวิกฤตซึ่งเกิดได้ยากเพื่อทดสอบยานพาหนะอัตโนมัติ หรือ AV ระบบสามารถลดระยะการทดสอบที่จำเป็นของยานพาหนะดังกล่าวลงได้ 99.99%

Henry Liu จาก U-M อธิบายว่า "พาหนะ AV ที่เราใช้เป็นของจริง แต่เราได้สร้างสภาพแวดล้อมการทดสอบแบบความเป็นจริงผสม (mixed reality) ยานพาหนะที่เป็นฉากหลังเป็นแบบเสมือน ซึ่งช่วยให้เราสามารถฝึกฝนยานพาหนะเพื่อสร้างสถานการณ์ที่ท้าทายซึ่งเกิดขึ้นไม่บ่อยนักบนถนน

Shuo Feng จากมหาวิทยาลัย Tsinghua ของจีนกล่าวว่าการเรียนรู้เสริมกำลังอย่างหนาแน่น (dense reinforcement learning)" เปิดประตูสำหรับการเร่งความเร็วในการอบรมระบบอัตโนมัติที่มีความสำคัญต่อความปลอดภัยอย่างรวดเร็วโดยใช้ประโยชน์จากตัวแทนที่ใช้ AI ในการทดสอบ ซึ่งอาจสร้างความสัมพันธ์ทางชีวภาพระหว่างการทดสอบและการฝึกอบรม ซึ่งจะช่วยเร่งความเร็วได้ทั้งสองสาขา"

อ่านข่าวเต็มได้ที่: University of Michigan News

วันจันทร์ที่ 27 มีนาคม พ.ศ. 2566

ต่อต้านเมล็ดพันธ์ปลอมด้วยฉลากที่โคลนไม่ได้

MIT-Seed_tracking
ภาพจาก MIT News

แท็กที่ย่อยสลายได้ทางชีวภาพที่พัฒนาโดยนักวิทยาศาสตร์ของ Massachusetts Institute of Technology (MIT) สามารถให้เมล็ดพันธุ์ที่มีรหัสของแท้ที่ "ไม่สามารถโคลน (clone) ได้"

ฉลากประกอบด้วยจุดเล็กๆ ของวัสดุที่ได้จากผ้าไหม ซึ่งแต่ละจุดมีการผสมผสานที่เป็นเอกลักษณ์ของลายเซ็นทางเคมีที่แตกต่างกัน

แท็ก "ใช้ประโยชน์จากการสุ่มและความไม่แน่นอนในกระบวนการของแอปพลิเคชัน เพื่อสร้างคุณลักษณะลายเซ็นเฉพาะที่สามารถอ่านได้และไม่สามารถทำซ้ำได้" ตามคำกล่าวของ Benedetto Marelli จาก MIT

Marelli กล่าวว่าพวกเขาได้เพิ่มสีเพื่อทำให้อนุภาคขนาดเล็กจับตัวกันเป็นรูปแบบสุ่มที่สามารถอ่านได้ด้วยสเปกโตรกราฟ กล้องจุลทรรศน์แบบพกพา หรือกล้องโทรศัพท์มือถือที่มีเลนส์มาโคร รูปภาพสามารถประมวลผลในเครื่องเพื่อสร้างรหัสฟังก์ชันที่ไม่สามารถโคลนได้ จากนั้นจึงส่งไปยังระบบคลาวด์เพื่อเปรียบเทียบกับฐานข้อมูลที่ปลอดภัยเพื่อรับประกันความถูกต้องของผลิตภัณฑ์

อ่านข่าวเต็มได้ที่: MIT News

วันอาทิตย์ที่ 26 มีนาคม พ.ศ. 2566

นักวิจัยพัฒนาระบบกระตุ้นสมองส่วนลึก 'อัจฉริยะ' สำหรับผู้ป่วยพาร์กินสัน

doctors-in-lab
ภาพจาก Michigan Tech News

นักวิจัยของ Michigan Technological University (Michigan Tech) ได้พัฒนาระบบจำลองสมองส่วนลึก (deep brain simulation system) หรือ DBS ที่ได้รับการปรับปรุง เพื่อช่วยรักษาโรคพาร์กินสันผ่านการใช้คอมพิวเตอร์นิวโรมอร์ฟิก (neuromorphic) ซึ่งใช้ไมโครชิปและอัลกอริทึมเพื่อเลียนแบบระบบประสาท

ผลที่ได้คือระบบ DBS วงปิด (closed-loop) สามารถปรับการกระตุ้นตามสัญญาณสมองของผู้ป่วย เพิ่มประสิทธิภาพการใช้พลังงาน 

Hongyu An จาก Michigan Tech กล่าวว่าการวิจัยนี้ "จะเปิดประตูใหม่สู่การพัฒนาอุปกรณ์ทางการแพทย์อัจฉริยะสำหรับการฟื้นฟูสมองที่มากขึ้นและรวดเร็วยิ่งขึ้น"

อ่านข่าวเต็มได้ที่: Michigan Tech News